Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a crucial coactivator that regulates mitochondrial biogenesis and function across diverse tissues, including the brain, heart, skeletal muscle, bone marrow, and liver. The diversity of PGC-1α isoforms in distinct tissues allows this co-transcription factor to exert wide-ranging biological effects, including regulating mitochondrial functions, oxidative stress, and endoplasmic reticulum homeostasis. Here, we focus on the key roles of PGC-1α in cell differentiation. Initially identified in brown adipose tissue in response to cold exposure, PGC-1α regulates cell differentiation by modulating gene expression networks involved in mitochondrial biogenesis. PGC-1α influences cell fate in several cell types, including adipocytes, skeletal muscle cells, and bone marrow-derived cells. A deeper understanding of PGC-1α provides valuable insights into developmental biology, tissue formation, and potential therapeutic targets for regenerative medicine and disease treatment. This review explores recent progress in understanding the roles of PGC-1α in cell differentiation, offering an integrated perspective on its significance in tissue and organism development.
Keywords:
Cell differentiation; Metabolic reprogramming; PGC-1α; Tissue regeneration.
Read more about this post…
Credits: Source
Disclaimer




Serving