...
Friday, January 16, 2026
.
1M+
.
website counter widget
.
.
More
    Friday, January 16, 2026
    1M+ Views
    ...
    website counter
    ...
    More
      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      BACH2 regulates T cell lineage state to enhance CAR T cell function – Immunology Research


    • Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

      Article 
      PubMed 

      Google Scholar
       

    • Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat. Immunol. 22, 370–380 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Roychoudhuri, R. et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Haso, W. et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121, 1165–1174 (2013).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

      Article 
      PubMed 

      Google Scholar
       

    • Boroughs, A. C. et al. A distinct transcriptional program in human CAR T cells bearing the 4-1BB signaling domain revealed by scRNA-seq. Mol. Ther. 28, 2577–2592 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Selli, M. E. et al. Costimulatory domains direct distinct fates of CAR-driven T-cell dysfunction. Blood 141, 3153–3165 (2023).

      PubMed 
      PubMed Central 

      Google Scholar
       

    • Shao, W., Wang, Y., Fang, Q., Shi, W. & Qi, H. Epigenetic recording of stimulation history reveals BLIMP1–BACH2 balance in determining memory B cell fate upon recall challenge. Nat. Immunol. 25, 1432–1444 (2024).

      Article 
      PubMed 

      Google Scholar
       

    • Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Tsukumo, S.-I. et al. Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc. Natl Acad. Sci. USA 110, 10735–10740 (2013).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Godec, J. et al. Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation. Immunity 44, 194–206 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kalia, V. et al. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

      Article 
      PubMed 

      Google Scholar
       

    • Selli, M. E., Landmann, J. H., Arveseth, C. & Singh, N. Inducing T cell dysfunction by chronic stimulation of CAR-engineered T cells targeting cancer cells in suspension cultures. STAR Protoc. 4, 101954 (2023).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Jabbari, A. & Harty, J. T. Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J. Exp. Med. 203, 919–932 (2006).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Nolz, J. C. & Harty, J. T. Protective capacity of memory CD8+ T cells is dictated by antigen exposure history and nature of the infection. Immunity 34, 781–793 (2011).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D. & Wandless, T. J. A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. 17, 981–988 (2010).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Singh, N., Perazzelli, J., Grupp, S. A. & Barrett, D. M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 8, 320ra3 (2016).

      Article 
      PubMed 

      Google Scholar
       

    • Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wilson, T. L. et al. Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages. Cancer Discov. 12, 2098–2119 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Laetsch, T. W. et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J. Clin. Oncol. 41, 1664–1669 (2023).

      Article 
      PubMed 

      Google Scholar
       

    • Frank, M. J. et al. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 404, 353–363 (2024).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Richman, S. A. et al. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res. 6, 36–46 (2018).

      Article 
      PubMed 

      Google Scholar
       

    • Chan, J. D. et al. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature 629, 201–210 (2024).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Doan, A. E. et al. FOXO1 is a master regulator of memory programming in CAR T cells. Nature 629, 211–218 (2024).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Riddell, S. R. et al. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J. 20, 141–144 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Amatya, C. et al. Optimization of anti-CD19 CAR T cell production for treatment of patients with chronic lymphocytic leukemia. Mol. Ther. Methods Clin. Dev. 32, 101212 (2024).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Arcangeli, S. et al. Next-generation manufacturing protocols enriching TSCM CAR T cells can overcome disease-specific T cell defects in cancer patients. Front. Immunol. 11, 1217 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Freitas, K. A. et al. Enhanced T cell effector activity by targeting the mediator kinase module. Science 378, eabn5647 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Yu, F., Sankaran, V. G. & Yuan, G.-C. CUT&RUNTools 2.0: a pipeline for single-cell and bulk-level CUT&RUN and CUT&Tag data analysis. Bioinformatics 38, 252–254 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wang, Q. et al. Exploring epigenomic datasets by ChIPseeker. Curr. Protoc. 2, e585 (2022).

      Article 
      PubMed 

      Google Scholar
       

    • Talleur, A. C. et al. Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL. Blood Adv. 6, 5737–5749 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       



    • Read more about this post…

      Credits: Source

      Disclaimer

      Join us

      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      Local Weather

      New York
      scattered clouds
      0.5 ° C
      1.4 °
      -0.5 °
      41 %
      7.2kmh
      40 %
      Fri
      1 °
      Sat
      2 °
      Sun
      1 °
      Mon
      1 °
      Tue
      -0 °

      Web Hits

      website counter

      Visitor Count

      hit counter

      In-Service

      AF.com AI Powered 7-years

      Latest Posts

      spot_imgspot_img

      Textbooks Challenged: Scientists Discover New Mechanism of Cell Division – Science News

      Scientists have uncovered a new way embryonic cells divide when conventional mechanisms fail. Cell division underpins all forms of life, but scientists have long...

      Related articles

      Leave a reply

      Please enter your comment!
      Please enter your name here

      spot_imgspot_img
      Privacy Overview

      This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.