...
Thursday, January 8, 2026
.
1M+
.
website counter widget
.
.
More
    Thursday, January 8, 2026
    1M+ Hits
    ...
    website counter
    ...
    More
      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      The differentiation and function of heterogeneous thymic dendritic cell subsets require signals provided by distinct thymocyte cell types – Immunology Research


    • Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells. Nat. Rev. Immunol. 24, 103–117 (2024).

      Article 
      PubMed 

      Google Scholar
       

    • Klein, L. & Petrozziello, E. Antigen presentation for central tolerance induction. Nat. Rev. Immunol. 25, 57–72 (2025).

      Article 
      PubMed 

      Google Scholar
       

    • Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Březina, J., Vobořil, M. & Filipp, D. Mechanisms of direct and indirect presentation of self-antigens in the thymus. Front. Immunol. 13, 926625 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Li, J., Park, J., Foss, D. & Goldschneider, I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J. Exp. Med. 206, 607–622 (2009).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wu, L. & Shortman, K. Heterogeneity of thymic dendritic cells. Semin. Immunol. 17, 304–312 (2005).

      Article 
      PubMed 

      Google Scholar
       

    • Hu, Z. et al. CCR7 modulates the generation of thymic regulatory T cells by altering the composition of the thymic dendritic cell compartment. Cell Rep. 21, 168–180 (2017).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Ardouin, L. et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45, 305–318 (2016).

      Article 
      PubMed 

      Google Scholar
       

    • Oh, J. et al. CD40 mediates maturation of thymic dendritic cells driven by self-reactive CD4+ thymocytes and supports development of natural regulatory T cells. J. Immunol. 200, 1399–1412 (2018).

      Article 
      PubMed 

      Google Scholar
       

    • Vobořil, M. et al. A model of preferential pairing between epithelial and dendritic cells in thymic antigen transfer. eLife 11, e71578 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Breed, E. R. et al. Type 2 cytokines in the thymus activate SIRPα+ dendritic cells to promote clonal deletion. Nat. Immunol. 23, 1042–1051 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Spidale, N. A., Wang, B. & Tisch, R. Cutting edge: Antigen-specific thymocyte feedback regulates homeostatic thymic conventional dendritic cell maturation. J. Immunol. 193, 21–25 (2014).

      Article 
      PubMed 

      Google Scholar
       

    • Ashby, K. M. et al. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci. Immunol. 9, eadp1139 (2024).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859–868 (2003).

      Article 
      PubMed 

      Google Scholar
       

    • Leylek, R. et al. Integrated cross-species analysis identifies a conserved transitional dendritic cell population. Cell Rep. 29, 3736–3750 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Vobořil, M. et al. Thymic myeloid cells are heterogenous and include a novel population of transitional dendritic cells. J. Exp. Med. 223, e20250733 (2026).

      Article 
      PubMed 

      Google Scholar
       

    • Vollmann, E. H. et al. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nat. Commun. 12, 6230 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zegarra-Ruiz, D. F. et al. Thymic development of gut-microbiota-specific T cells. Nature 594, 413–417 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Vobořil, M. et al. Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nat. Commun. 11, 2361 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lancaster, J. N., Li, Y. & Ehrlich, L. I. R. Chemokine-mediated choreography of thymocyte development and selection. Trends Immunol. 39, 86–98 (2018).

      Article 
      PubMed 

      Google Scholar
       

    • Zhou, T.-A. et al. Thymic macrophages consist of two populations with distinct localization and origin. eLife 11, 2021.11.04.467238 (2022).

      Article 

      Google Scholar
       

    • Li, Y. et al. CCR4 and CCR7 differentially regulate thymocyte localization with distinct outcomes for central tolerance. eLife 12, e80443 (2023).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Daley, S. R., Hu, D. Y. & Goodnow, C. C. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-κB. J. Exp. Med. 210, 269–285 (2013).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Stritesky, G. L. et al. Murine thymic selection quantified using a unique method to capture deleted T cells. Proc. Natl Acad. Sci. USA 110, 4679–4684 (2013).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

      Article 
      PubMed 

      Google Scholar
       

    • Kurts, C., Miller, J. F. A. P., Subramaniam, R. M., Carbone, F. R. & Heath, W. R. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J. Exp. Med. 188, 409–414 (1998).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Humblet, C., Rudensky, A. Y. & Kyewski, B. Presentation and intercellular transfer of self antigen within the thymic microenvironment: expression of the Eα peptide–l-Ab complex by isolated thymic stromal cells. Int. Immunol. 6, 1949–1958 (1994).

      Article 
      PubMed 

      Google Scholar
       

    • Owen, D. L. et al. Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 20, 195–205 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Proietto, A. I. et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl Acad. Sci. USA 105, 19869–19874 (2008).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Watanabe, M., Lu, Y., Breen, M. & Hodes, R. J. B7–CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat. Commun. 11, 6264 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Laurent, J., Bosco, N., Marche, P. N. & Ceredig, R. New insights into the proliferation and differentiation of early mouse thymocytes. Int. Immunol. 16, 1069–1080 (2004).

      Article 
      PubMed 

      Google Scholar
       

    • Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

      Article 
      PubMed 

      Google Scholar
       

    • Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

      Article 
      PubMed 

      Google Scholar
       

    • Hadeiba, H. et al. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36, 438–450 (2012).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7, 1092–1100 (2006).

      Article 
      PubMed 

      Google Scholar
       

    • Lopes, N., Charaix, J., Cédile, O., Sergé, A. & Irla, M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat. Commun. 9, 1262 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

      Article 
      PubMed 

      Google Scholar
       

    • Irla, M. et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29, 451–463 (2008).

      Article 
      PubMed 

      Google Scholar
       

    • Benhammadi, M. et al. IFN-λ enhances constitutive expression of MHC class I molecules on thymic epithelial cells. J. Immunol. 205, 1268–1280 (2020).

      Article 
      PubMed 

      Google Scholar
       

    • Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed using cDNA- based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

      Article 
      PubMed 

      Google Scholar
       

    • Edilova, M. I., Abdul-Sater, A. A. & Watts, T. H. TRAF1 signaling in human health and disease. Front. Immunol. 9, 2969 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Herring, C. A. et al. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51 (2018).

      Article 
      PubMed 

      Google Scholar
       

    • Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wu, R. & Murphy, K. M. DCs at the center of help: origins and evolution of the three-cell-type hypothesis. J. Exp. Med. 219, e20211519 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun. 11, 1201 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Xing, Y., Wang, X., Jameson, S. C. & Hogquist, K. A. Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nat. Immunol. 17, 565–573 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Breed, E. R., Watanabe, M. & Hogquist, K. A. Measuring thymic clonal deletion at the population level. J. Immunol. 202, 3226–3233 (2019).

      Article 
      PubMed 

      Google Scholar
       

    • Calindi, A. & Ehrlich, L. I. R. Intrathymic regulation of dendritic cell subsets and their contributions to central tolerance. Immunol. Rev. 332, e70039 (2025).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Park, J.-E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Perry, J. S. A. et al. CD36 mediates cell-surface antigens to promote thymic development of the regulatory T cell receptor repertoire and allo-tolerance. Immunity 48, 923–936 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Herbin, O. et al. Medullary thymic epithelial cells and CD8α+ dendritic cells coordinately regulate central tolerance but CD8α+ cells are dispensable for thymic regulatory T cell production. J. Autoimmun. 75, 141–149 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Perry, J. S. A. et al. Distinct contributions of AIRE and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41, 414–426 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

      Article 
      PubMed 

      Google Scholar
       

    • Montoya, M. et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99, 3263–3271 (2002).

      Article 
      PubMed 

      Google Scholar
       

    • Lienenklaus, S. et al. Novel reporter mouse reveals constitutive and inflammatory expression of IFN-β in vivo. J. Immunol. 183, 3229–3236 (2009).

      Article 
      PubMed 

      Google Scholar
       

    • Sakref, C. et al. Type III interferon primes pDCs for TLR7 activation and antagonizes immune suppression mediated by TGF-β and PGE2. Nat. Commun. 16, 3045 (2025).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Baba, T., Nakamoto, Y. & Mukaida, N. Crucial contribution of thymic SIRPα+ conventional dendritic cells to central tolerance against blood-borne antigens in a CCR2-dependent manner. J. Immunol. 183, 3053–3063 (2009).

      Article 
      PubMed 

      Google Scholar
       

    • Joyee, A. G., Uzonna, J. & Yang, X. Invariant NKT cells preferentially modulate the function of CD8α+ dendritic cell subset in inducing type 1 immunity against infection. J. Immunol. 184, 2095–2106 (2010).

      Article 
      PubMed 

      Google Scholar
       

    • Leventhal, D. S. et al. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity 44, 847–859 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wu, R. et al. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat. Immunol. 23, 1536–1550 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Seach, N., Wong, K., Hammett, M., Boyd, R. L. & Chidgey, A. P. Purified enzymes improve isolation and characterization of the adult thymic epithelium. J. Immunol. Methods 385, 23–34 (2012).

      Article 
      PubMed 

      Google Scholar
       

    • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2025).

    • Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Seita, J. et al. Gene expression commons: an open platform for absolute gene expression profiling. PLoS ONE 7, e40321 (2012).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45, W130–W137 (2017).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Chen, B. et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 184, 6262–6280 (2021).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

      Article 
      PubMed 

      Google Scholar
       

    • La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lutz, K. et al. Ly6D+Siglec-H+ precursors contribute to conventional dendritic cells via a ZBTB46+Ly6D+ intermediary stage. Nat. Commun. 13, 3456 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

      Article 
      PubMed 

      Google Scholar
       

    • Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

      Article 
      PubMed 

      Google Scholar
       

    • Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

      Article 
      PubMed 

      Google Scholar
       



    • Read more about this post…

      Credits: Source

      Disclaimer

      Join us

      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      Local Weather

      New York
      few clouds
      5.5 ° C
      6.3 °
      4 °
      66 %
      4.6kmh
      20 %
      Thu
      13 °
      Fri
      8 °
      Sat
      10 °
      Sun
      9 °
      Mon
      5 °

      Web Hits

      website counter

      Visitor Count

      hit counter

      In-Service

      AF.com AI Powered 7-years

      Latest Posts

      spot_imgspot_img

      Your Gut Microbes May Be Quietly Transforming How Your Brain Works – Science News

      A pioneering study provides new evidence that gut microbes vary across primate species and can shape physiology in ways associated with differences in brain...

      Related articles

      Leave a reply

      Please enter your comment!
      Please enter your name here

      spot_imgspot_img
      Privacy Overview

      This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.