Auteri, M. et al. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol. Res. 93, 11–21 (2015).
Ehlert, F. J., Pak, K. J. & Griffin, M. T. Muscarinic agonists and antagonists: effects on gastrointestinal function. Handb. Exp. Pharmacol. 208, 343–374 (2012).
Burleigh, D. E. Evidence for a functional cholinergic deficit in human colonic tissue resected for constipation. J. Pharm. Pharmacol. 40, 55–57 (1988).
Fujita, Y. et al. Microbiota-derived acetylcholine can promote gut motility in Drosophila melanogaster. Phil. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2023.0075 (2024).
Collier, C. A. et al. Crisis in the gut: navigating gastrointestinal challenges in Gulf War Illness with bioengineering. Mil. Med. Res. https://doi.org/10.1186/s40779-024-00547-2 (2024).
De Palma, G. et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaf6397 (2017).
Ge, X. L. et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. https://doi.org/10.1186/s12967-016-1105-4 (2017).
Vincent, A. D. et al. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G896–G907 (2018).
Neufeld, K. A. M. et al. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25, 183–e88 (2013).
Mobley, H. L. & Hausinger, R. P. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 53, 85–108 (1989).
Fried, D. E. et al. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G570–G580 (2017).
Wang, P. et al. Gut microbiome-derived ammonia modulates stress vulnerability in the host. Nat. Metab. https://doi.org/10.1038/s42255-023-00909-5 (2023).
Krumbeck, J. A. et al. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. Environ. Microbiol. 18, 2172–2184 (2016).
Schreiber, S. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl Acad. Sci. USA 101, 5024–5029 (2004).
Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).
Servin-Vences, M. R. et al. PIEZO2 in somatosensory neurons controls gastrointestinal transit. Cell 186, 3386–3399 (2023).
Bubier, J. A. et al. Host genetic control of gut microbiome composition. Mamm. Genome 32, 263–281 (2021).
Cagnon, L. & Braissant, O. Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res. Rev. 56, 183–197 (2007).
Huang, Z. J. et al. Nitric oxide donor-based cancer therapy: advances and prospects. J. Med. Chem. 60, 7617–7635 (2017).
Bharucha, A. E. & Lacy, B. E. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology 158, 1232–1249.e3 (2020).
Lyford, G. L. et al. Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation. Gut 51, 496–501 (2002).
Rueckert, H. & Ganz, J. How to heal the gut’s brain: regeneration of the enteric nervous system. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23094799 (2022).
Li, Z. Q. et al. Structural basis for different ω-agatoxin IVA sensitivities of the P-type and Q-type Cav2.1 channels. Cell Res. 34, 273–274 (2024).
Lazarenko, R. M. et al. Ammonium chloride alters neuronal excitability and synaptic vesicle release. Sci. Rep. 7, 5061 (2017).
Riley, B. B. & Barclay, S. L. Ammonia promotes accumulation of intracellular cAMP in differentiating amoebae of Dictyostelium discoideum. Development 109, 715–722 (1990).
Wang, F. et al. Ammonium increases Ca2+ signalling and upregulates expression of Cav1.2 gene in astrocytes in primary cultures and in the in vivo brain. Acta Physiol. 214, 261–274 (2015).
Kobrinsky, E. Heterogeneity of calcium channel/cAMP-dependent transcriptional activation. Curr. Mol. Pharmacol. 8, 54–60 (2015).
Zhang, C. C. et al. A key genetic factor governing arabinan utilization in the gut microbiome alleviates constipation. Cell Host Microbe https://doi.org/10.1016/j.chom.2023.10.011 (2023).
Han, M. N. et al. Assessment of gastrointestinal function and enteric nervous system changes over time in the A53T mouse model of Parkinson’s disease. Acta Neuropathol. Commun. 13, 58 (2025).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Chen, S. F. et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).
Langdon, W. B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. Biodata Mining https://doi.org/10.1186/s13040-014-0034-0 (2015).
Li, D. H. et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Xu, H. B. et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS ONE https://doi.org/10.1371/journal.pone.0052249 (2012).
Lu, J. et al. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. https://doi.org/10.7717/peerj-cs.104 (2017).
Wood, D. E. et al., Improved metagenomic analysis with Kraken 2. Genome Biol. https://doi.org/10.1186/s13059-019-1891-0 (2019).
Fu, L. M. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics https://doi.org/10.1186/1471-2105-11-119 (2010).
Patro, R. et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
Dan, Z. et al. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 11, 1246–1267 (2020).
Tian, H. L. et al. Gut metagenome as a potential diagnostic and predictive biomarker in slow transit constipation. Front. Med. https://doi.org/10.3389/fmed.2021.777961 (2022).
Wang, C. Y. et al. GMMAD: a comprehensive database of human gut microbial metabolite associations with diseases. BMC Genomics https://doi.org/10.1186/s12864-023-09599-5 (2023).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Kang, D. W. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ https://doi.org/10.7717/peerj.7359 (2019).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Kim, D. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Yu, G. C. et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
Read more about this post…
Credits: Source
Disclaimer




Serving