...
Friday, January 30, 2026
.
1M+
.
website counter widget
.
.
More
    Friday, January 30, 2026
    1M+ Views
    ...
    website counter
    ...
    ...
    More

      Cell cycle dysregulation of globally important SAR11 bacteria resulting from environmental perturbation – Microbiology Research


    • Giovannoni, S. J., Thrash, J. C. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2011).

      Article 
      PubMed 

      Google Scholar
       

    • Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Schattenhofer, M. et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ. Microbiol. 11, 2078–2093 (2009).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Giovannoni, S. J. SAR11 Bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 9, 231–255 (2017).

      Article 
      PubMed 

      Google Scholar
       

    • Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252-12 (2012).

    • Noell, S. E. & Giovannoni, S. J. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ. Microbiol. 21, 2559–2575 (2019).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Clifton, B. E., Alcolombri, U., Uechi, G.-I., Jackson, C. J. & Laurino, P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 634, 721–728 (2024).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Grzymski, J. J. & Dussaq, A. M. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 6, 71–80 (2012).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Lachance, J.-C., Rodrigue, S. & Palsson, B. O. Minimal cells, maximal knowledge. eLife 8, e45379 (2019).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Moger-Reischer, R. Z. et al. Evolution of a minimal cell. Nature 620, 122–127 (2023).

    • Cottrell, M. T. & Kirchman, D. L. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl. Environ. Microbiol. 82, 6010–6018 (2016).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Noell, S. E., Hellweger, F. L., Temperton, B. & Giovannoni, S. J. A reduction of transcriptional regulation in aquatic oligotrophic microorganisms enhances fitness in nutrient-poor environments. Microbiol. Mol. Biol. Rev. 87, e0012422 (2023).

      Article 
      PubMed 

      Google Scholar
       

    • Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Tripp, H. J. et al. Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ. Microbiol. 11, 230–238 (2009).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Carini, P., Steindler, L., Beszteri, S. & Giovannoni, S. J. Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J. 7, 592–602 (2013).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Carlson, C. A. et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 3, 283–295 (2009).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Becker, J. W., Hogle, S. L., Rosendo, K. & Chisholm, S. W. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 13, 1506–1519 (2019).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Dethlefsen, L. & Schmidt, T. M. Performance of the translational apparatus varies with the ecological strategies of bacteria. J. Bacteriol. 189, 3237–3245 (2007).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Schwalbach, M. S., Tripp, H. J., Steindler, L., Smith, D. P. & Giovannoni, S. J. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ. Microbiol. 12, 490–500 (2010).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Carini, P., White, A. E., Campbell, E. O. & Giovannoni, S. J. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat. Commun. 5, 4346 (2014).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Lankiewicz, T. S., Cottrell, M. T. & Kirchman, D. L. Growth rates and rRNA content of four marine bacteria in pure cultures and in the Delaware estuary. ISME J. 10, 823–832 (2016).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Henson, M. W., Lanclos, V. C., Faircloth, B. C. & Thrash, J. C. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J. 12, 1846–1860 (2018).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lanclos, V. C. et al. Ecophysiology and genomics of the brackish water adapted SAR11 subclade IIIa. ISME J. 17, 620–629 (2023).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Willis, L. & Huang, K. C. Sizing up the bacterial cell cycle. Nat. Rev. Microbiol. 15, 606–620 (2017).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Olsson, J. A., Nordström, K., Hjort, K. & Dasgupta, S. Eclipse–synchrony relationship in Escherichia coli strains with mutations affecting sequestration, initiation of replication and superhelicity of the bacterial chromosome. J. Mol. Biol. 334, 919–931 (2003).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Levin, P. A., Shim, J. J. & Grossman, A. D. Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J. Bacteriol. 180, 6048–6051 (1998).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Sundararajan, K. et al. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction. Nat. Commun. 6, 7281 (2015).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Dubarry, N., Willis, C. R., Ball, G., Lesterlin, C. & Armitage, J. P. In vivo imaging of the segregation of the 2 chromosomes and the cell division proteins of Rhodobacter sphaeroides reveals an unexpected role for MipZ. mBio 10, e02515-18 (2019).

    • Pelletier, J. F. et al. Genetic requirements for cell division in a genomically minimal cell. Cell 184, 2430–2440.e16 (2021).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Fujikawa, N. et al. Structural and biochemical analyses of hemimethylated DNA binding by the SeqA protein. Nucleic Acids Res. 32, 82–92 (2004).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Boye, E. & Løbner-Olesen, A. The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 62, 981–989 (1990).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Blair, J. A. et al. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein. Structure 21, 1590–1601 (2013).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Krupka, M., Sobrinos-Sanguino, M., Jiménez, M., Rivas, G. & Margolin, W. Escherichia coli ZipA organizes FtsZ polymers into dynamic ring-like protofilament structures. mBio 9, e01008-18 (2018).

    • Pichoff, S., Du, S. & Lutkenhaus, J. Roles of FtsEX in cell division. Res. Microbiol. 170, 374–380 (2019).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Corrales-Guerrero, L. et al. MipZ caps the plus-end of FtsZ polymers to promote their rapid disassembly. Proc. Natl Acad. Sci. USA 119, e2208227119 (2022).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Letzkus, M., Trela, C. & Mera, P. E. Three factors ParA, TipN, and DnaA-mediated chromosome replication initiation are contributors of centromere segregation in Caulobacter crescentus. Mol. Biol. Cell 35, ar68 (2024).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Freel, K. C. et al. New SAR11 isolate genomes and global marine metagenomes resolve ecologically relevant units within the Pelagibacterales. Nat. Commun. 17, 328 (2025).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Oren, A. A plea for linguistic accuracy – also for Candidatus taxa. Int. J. Syst. Evol. Microbiol. 67, 1085–1094 (2017).

      Article 
      PubMed 

      Google Scholar
       

    • Cooper, S. & Helmstetter, C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31, 519–540 (1968).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Jun, S., Si, F., Pugatch, R. & Scott, M. Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review. Rep. Prog. Phys. 81, 056601 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Skarstad, K., Steen, H. B. & Boye, E. Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J. Bacteriol. 163, 661–668 (1985).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Fu, H., Uchimiya, M., Gore, J. & Moran, M. A. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc. Natl Acad. Sci. USA.117, 3656–3662 (2020).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Daniel, R. M. & Danson, M. J. Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Lett. 587, 2738–2743 (2013).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Løbner-Olesen, A., Skarstad, K., Hansen, F. G., von Meyenburg, K. & Boye, E. The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57, 881–889 (1989).

      Article 
      PubMed 

      Google Scholar
       

    • Bremer, H. & Churchward, G. Deoxyribonucleic acid synthesis after inhibition of initiation of rounds of replication in Escherichia coli B/r. J. Bacteriol. 130, 692–697 (1977).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Dai, K. & Lutkenhaus, J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145–6151 (1992).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Luo, H., Csűros, M., Hughes, A. L. & Moran, M. A. Evolution of divergent life history strategies in marine Alphaproteobacteria. mBio 4, e00373-13 (2013).

    • Smith, D. P. et al. Proteomic and transcriptomic analyses of ‘Candidatus Pelagibacter ubique’ describe the first PII-independent response to nitrogen limitation in a free-living Alphaproteobacterium. mBio 4, e00133–12 (2013).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zheng, H. et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat. Microbiol. 5, 995–1001 (2020).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lee, C. Characterizing Growth Promoters and Inhibitors of SAR11 Pelagibacter sp. HTCC7211. BSc thesis, Oregon State Univ. (2013).

    • Braakman, R. et al. Global niche partitioning of purine and pyrimidine cross-feeding among ocean microbes. Sci. Adv. 11, eadp1949 (2025).

    • Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).

      Article 
      CAS 

      Google Scholar
       

    • Held, N. A. et al. Nutrient colimitation is a quantitative, dynamic property of microbial populations. Proc. Natl Acad. Sci. USA 121, e2400304121 (2024).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Schaechter, M., MaalØe, O. & Kjeldgaard, N. O. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. Microbiology 19, 592–606 (1958).

      CAS 

      Google Scholar
       

    • Si, F. et al. Mechanistic origin of cell-size control and homeostasis in bacteria. Curr. Biol. 29, 1760–1770.e7 (2019).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Guo, X. et al. Automated determination of ammonium at nanomolar levels in seawater by coupling lab-in-syringe with highly sensitive light-emitting-diode-induced fluorescence detection. Molecules 30, 1288 (2025).

    • Moran, M. A. et al. The ocean’s labile DOC supply chain. Limnol. Oceanogr. 67, 1007–1021 (2022).

      Article 
      CAS 

      Google Scholar
       

    • Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Paerl, H. W. Why does N-limitation persist in the world’s marine waters? Mar. Chem. 206, 1–6 (2018).

      Article 
      CAS 

      Google Scholar
       

    • Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton: use of phytoplankton-derived DOC by bacterioplankton. Environ. Microbiol. 14, 2348–2360 (2012).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Brüwer, J. D. et al. In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes, and Aurantivirga during phytoplankton blooms reveal differences in population controls. mSystems 8, e0128722 (2023).

      Article 
      PubMed 

      Google Scholar
       

    • Margolin, W. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol. 6, 862–871 (2005).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Barrows, J. M., Sundararajan, K., Bhargava, A. & Goley, E. D. FtsA regulates Z-ring morphology and cell wall metabolism in an FtsZ C-terminal linker-dependent manner in Caulobacter crescentus. J. Bacteriol. 202, e00693-19 (2020).

    • Wu, K. J. et al. Characterization of conserved and novel septal factors in Mycobacterium smegmatis. J. Bacteriol. 200, e00649-17 (2018).

    • Oh, H.-M. et al. Complete genome sequence of ‘Candidatus Puniceispirillum marinum’ IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. J. Bacteriol. 192, 3240–3241 (2010).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Coelho, J. T. et al. Culture-supported ecophysiology of the SAR116 clade demonstrates metabolic and spatial niche partitioning. ISME J. 19, wraf124 (2025).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Cho, J.-C. & Giovannoni, S. J. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53, 1031–1036 (2003).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Dang, H., Li, T., Chen, M. & Huang, G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74, 52–60 (2008).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

      Article 
      CAS 

      Google Scholar
       

    • Stock, C. A. et al. Ocean biogeochemistry in GFDL’s Earth System Model 4.1 and its response to increasing atmospheric CO2. J. Adv. Model. Earth Syst. 12, e2019MS002043 (2020).

    • Ross, A. C. et al. A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0). Geosci. Model Dev. 16, 6943–6985 (2023).

      Article 
      CAS 

      Google Scholar
       

    • Martinez-Gutierrez, C. A., Uyeda, J. C. & Aylward, F. O. A timeline of bacterial and archaeal diversification in the ocean. Elife 12, RP88268 (2023).

    • Hyun, J. C. & Palsson, B. O. Reconstruction of the last bacterial common ancestor from 183 pangenomes reveals a versatile ancient core genome. Genome Biol. 24, 183 (2023).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Henson, M. W. et al. Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl. Environ. Microbiol. 86, e00943-20 (2020).

    • Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Thrash, C. Pangenomic analyses files. figshare https://doi.org/10.6084/M9.FIGSHARE.30087295.V1 (2025).

    • UniProt Consortium. UniProt: the universal protein knowledgebase in 2025. Nucleic Acids Res. 53, D609–D617 (2025).

      Article 

      Google Scholar
       

    • Ahmad, S. et al. The UniProt website API: facilitating programmatic access to protein knowledge. Nucleic Acids Res. 53, W547–W553 (2025).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

      Article 
      PubMed 

      Google Scholar
       

    • Henson, M. W. et al. Artificial seawater media facilitate cultivating members of the microbial majority from the Gulf of Mexico. mSphere 1, e00028-16 (2016).

    • Sodium phosphate. Cold Spring Harb. Protoc. 2006, db.rec8303 (2006).

    • Cheng, C. & Thrash, J. C. sparse-growth-curve: a computational pipeline for parsing cellular growth curves with low temporal resolution. Microbiol. Resour. Announc. 10, e00296-21 (2021).

    • Lanclos, V. C. et al. New isolates refine the ecophysiology of the Roseobacter CHAB-I-5 lineage. ISME Commun. 5, ycaf068 (2025).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Cheng, C. Thrash-lab/SAR11_cell_cycle: V1.0.0. Zenodo https://doi.org/10.5281/ZENODO.17703344 (2025).

    • Stokke, C., Flåtten, I. & Skarstad, K. An easy-to-use simulation program demonstrates variations in bacterial cell cycle parameters depending on medium and temperature. PLoS ONE 7, e30981 (2012).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Michelsen, O., Teixeira de Mattos, M. J., Jensen, P. R. & Hansen, F. G. Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology 149, 1001–1010 (2003).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Thrash, C. Epimicroscopy images of SAR11. figshare https://doi.org/10.6084/M9.FIGSHARE.29396375.V1 (2025).

    • Messer, W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev. 26, 355–374 (2002).

      CAS 
      PubMed 

      Google Scholar
       

    • Katayama, T., Ozaki, S., Keyamura, K. & Fujimitsu, K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat. Rev. Microbiol. 8, 163–170 (2010).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Boye, E. & Løbner-Olesen, A. Bacterial growth control studied by flow cytometry. Res. Microbiol. 142, 131–135 (1991).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Stokke, C., Waldminghaus, T. & Skarstad, K. Replication patterns and organization of replication forks in Vibrio cholerae. Microbiology 157, 695–708 (2011).

      Article 
      CAS 
      PubMed 

      Google Scholar
       



    • Read more about this post…

      Credits: Source

      Disclaimer

      [td_block_social_counter facebook="/groups/facultypositions" twitter="Drafs007" style="style1" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjUwIiwiZGlzcGxheSI6IiJ9LCJsYW5kc2NhcGUiOnsibWFyZ2luLWJvdHRvbSI6IjQwIiwiZGlzcGxheSI6IiJ9LCJsYW5kc2NhcGVfbWF4X3dpZHRoIjoxMTQwLCJsYW5kc2NhcGVfbWluX3dpZHRoIjoxMDE5LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3NjgsInBob25lIjp7Im1hcmdpbi1ib3R0b20iOiIzNSIsImRpc3BsYXkiOiIifSwicGhvbmVfbWF4X3dpZHRoIjo3Njd9" custom_title="Join us" manual_count_facebook="28500" manual_count_twitter="400" open_in_new_window="y" manual_count_youtube="600" youtube="/@scholarships4all"]

      Local Weather

      New York
      clear sky
      -8.5 ° C
      -8 °
      -10.5 °
      46 %
      9.8kmh
      0 %
      Sat
      -8 °
      Sun
      -4 °
      Mon
      -1 °
      Tue
      -0 °
      Wed
      -5 °

      Web Hits

      website counter

      Visitor Count

      hit counter

      In-Service

      AF.com AI Powered 7-years

      Latest Posts

      spot_imgspot_img

      Textbooks Challenged: Scientists Discover New Mechanism of Cell Division – Science News

      Scientists have uncovered a new way embryonic cells divide when conventional mechanisms fail. Cell division underpins all forms of life, but scientists have long...

      Related articles

      Leave a reply

      Please enter your comment!
      Please enter your name here

      spot_imgspot_img
      Privacy Overview

      This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.