Web Analytics
Welcome!
.
1M+
.
website counter widget
.
Follow
-5.8 C
Chicago
Tuesday, December 2, 2025
More
    -5.8 C
    Chicago
    Tuesday, December 2, 2025
    1M+ Hits
    ...
    website counter
    More
      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      Structure-guided design of a synthetic bile acid that inhibits Clostridioides difficile TcdB toxin – Microbiology Research


    • Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

      Article 
      PubMed 

      Google Scholar
       

    • Dubois, T. et al. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. npj Biofilms Microbiomes 5, 1–12 (2019).

      Article 

      Google Scholar
       

    • VanInsberghe, D. et al. Diarrhoeal events can trigger long-term Clostridium difficile colonization with recurrent blooms. Nat. Microbiol. 5, 642–650 (2020).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H. & Kuijper, E. J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2, 16020 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Bloom, P. P. & Young, V. B. Microbiome therapeutics for the treatment of recurrent Clostridioides difficile infection. Expert Opin. Biol. Ther. 23, 89–101 (2023).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6, e00551-15 (2015).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Chen, P. et al. Structural basis for recognition of frizzled proteins by Clostridium difficile toxin B. Science 360, 664–669 (2018).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Chen, P. et al. Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nat. Commun. 12, 3748 (2021).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kordus, S. L., Thomas, A. K. & Lacy, D. B. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat. Rev. Microbiol. 20, 285–298 (2022).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Chen, P. et al. Structure of the full-length Clostridium difficile toxin B. Nat. Struct. Mol. Biol. 26, 712–719 (2019).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kinsolving, J. et al. Structural and functional insight into the interaction of Clostridioides difficile toxin B and FZD7. Cell Rep. 43, 113727 (2024).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Tam, J. et al. Small molecule inhibitors of Clostridium difficile toxin B-induced cellular damage. Chem. Biol. 22, 175–185 (2015).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Ridlon, J. M. & Gaskins, H. R. Another renaissance for bile acid gastrointestinal microbiology. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-024-00896-2 (2024).

    • Monte, M. J., Marin, J. J., Antelo, A. & Vazquez-Tato, J. Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroenterol. 15, 804–816 (2009).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

      Article 
      CAS 

      Google Scholar
       

    • Tam, J. et al. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl Acad. Sci. USA 117, 6792–6800 (2020).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Chandrasekaran, R. & Lacy, D. B. The role of toxins in Clostridium difficile infection. FEMS Microbiol. Rev. 41, 723–750 (2017).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zhou, Y. et al. Structural dynamics of the CROPs domain control stability and toxicity of Paeniclostridium sordellii lethal toxin. Nat. Commun. 14, 8426 (2023).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Yang, X., Stein, K. R. & Hang, H. C. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat. Chem. Biol. 19, 91–100 (2023).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Aminzadeh, A., Larsen, C. E., Boesen, T. & Jørgensen, R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep. 23, e53597 (2022).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Stoltz, K. L. et al. Synthesis and biological evaluation of bile acid analogues inhibitory to Clostridium difficile spore germination. J. Med. Chem. 60, 3451–3471 (2017).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Nakhi, A. et al. Structural modifications that increase gut restriction of bile acid derivatives. RSC Med. Chem. 12, 394–405 (2021).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Winston, J. A., Thanissery, R., Montgomery, S. A. & Theriot, C. M. Cefoperazone-treated mouse model of clinically-relevant Clostridium difficile strain R20291. J. Vis. Exp. https://doi.org/10.3791/54850 (2016).

    • Madhurima, K., Nandi, B. & Sekhar, A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol. 11, 210012 (2021).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Zhou, R. et al. Molecular basis of TMPRSS2 recognition by Paeniclostridium sordellii hemorrhagic toxin. Nat. Commun. 15, 1976 (2024).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • von Eichel-Streiber, C., Sauerborn, M. & Kuramitsu, H. K. Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J. Bacteriol. 174, 6707–6710 (1992).

      Article 

      Google Scholar
       

    • Shen, A. et al. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat. Struct. Mol. Biol. 18, 364–371 (2011).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Icho, S. et al. Intestinal bile acids provide a surmountable barrier against C. difficile TcdB-induced disease pathogenesis. Proc. Natl Acad. Sci. USA 120, e2301252120 (2023).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Poley, J. R. & Hofmann, A. F. Role of fat maldigestion in pathogenesis of steatorrhea in ileal resection. Fat digestion after two sequential test meals with and without cholestyramine. Gastroenterology 71, 38–44 (1976).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Hamilton, J. P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

      Article 
      PubMed 

      Google Scholar
       

    • Fiorucci, S., Biagioli, M., Zampella, A. & Distrutti, E. Bile acids activated receptors regulate innate immunity. Front Immunol. 9, 1853 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Biagioli, M. et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J. Immunol. 199, 718–733 (2017).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Džunková, M. et al. The monoclonal antitoxin antibodies (actoxumab–bezlotoxumab) treatment facilitates normalization of the gut microbiota of mice with Clostridium difficile infection. Front. Cell. Infect. Microbiol. 6, 119 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Thanissery, R., Winston, J. A. & Theriot, C. M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 45, 86–100 (2017).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kisthardt, S. C., Thanissery, R., Pike, C. M., Foley, M. H. & Theriot, C. M. The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota. J. Bacteriol. 205, e00180-23 (2023).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Marr, C. R., Benlekbir, S. & Rubinstein, J. L. Fabrication of carbon films with 500 nm holes for cryo-EM with a direct detector device. J. Struct. Biol. 185, 42–47 (2014).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153 (2019).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Meng, E.C. et al. UCSF ChimeraX: tools for structure building and analysis. Prot. Sci. https://doi.org/10.1002/pro.4792 (2023).

    • Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2024).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).

      Article 
      PubMed 

      Google Scholar
       

    • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. 74, 519–530 (2018).

      Article 
      CAS 

      Google Scholar
       

    • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. 74, 531–544 (2018).

      Article 
      CAS 

      Google Scholar
       

    • Sorg, J. A. & Sonenshein, A. L. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J. Bacteriol. 191, 1115–1117 (2009).

      Article 
      CAS 
      PubMed 

      Google Scholar
       

    • Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

      Article 
      CAS 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       



    • Read more about this post…

      Credits: Source

      Disclaimer

      Join us

      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      Local Weather

      New York
      moderate rain
      3.7 ° C
      5 °
      2 °
      93 %
      7.7kmh
      100 %
      Tue
      4 °
      Wed
      5 °
      Thu
      4 °
      Fri
      1 °
      Sat
      4 °

      Web Hits

      hit counter

      Visitor Count

      hit counter

      In-Service

      AF.com AI Powered 7-years

      Latest articles

      spot_imgspot_img

      This Cellular Trick Helps Cancer Spread, but Could Also Stop It – SciTech News

      Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to...

      Related articles

      Leave a reply

      Please enter your comment!
      Please enter your name here

      spot_imgspot_img
      Privacy Overview

      This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.