Web Analytics
Welcome!
.
1M+
.
website counter widget
.
Follow
-5.8 C
Chicago
Tuesday, December 2, 2025
More
    -5.8 C
    Chicago
    Tuesday, December 2, 2025
    1M+ Hits
    ...
    website counter
    More
      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      MAP-X reveals distinct protein complex dynamics across Plasmodium falciparum blood stages – Microbiology Research


    • World Malaria Report (WHO, 2023).

    • Cowell, A. & Winzeler, E. Exploration of the Plasmodium falciparum resistome and druggable genome reveals new mechanisms of drug resistance and antimalarial targets. Microbiol. Insights 11, 1178636118808529 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Wicht, K. J., Mok, S. & Fidock, D. A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol. 74, 431–454 (2020).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Global Technical Strategy For Malaria 2016–2030, 2021 Update (WHO, 2021).

    • Siqueira-Neto, J. L. et al. Antimalarial drug discovery: progress and approaches. Nat. Rev. Drug Discov. 22, 807–826 (2023).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Guttery, D. S. et al. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 16, 128–140 (2014).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Singh, G. & Gupta, D. In-silico functional annotation of Plasmodium falciparum hypothetical proteins to identify novel drug targets. Front. Genet. 13, 821516 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Wasmuth, J., Daub, J., Peregrín-Alvarez, J. M., Finney, C. A. M. & Parkinson, J. The origins of apicomplexan sequence innovation. Genome Res. 19, 1202–1213 (2009).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Niss, K. et al. Complete topological mapping of a cellular protein interactome reveals bow-tie motifs as ubiquitous connectors of protein complexes. Cell Rep. 31, 107763 (2020).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Fadhal, E., Gamieldien, J. & Mwambene, E. C. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. BMC Syst. Biol. 8, 6 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Birth, D., Kao, W.-C. & Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun. 5, 4029 (2014).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Silk, S. E. et al. Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial. Lancet 24, 1105–1117 (2024).

      Article 
      CAS 

      Google Scholar
       

    • Keeley, A. & Soldati, D. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol. 14, 528–532 (2004).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Ghosh, S. et al. The Plasmodium rhoptry associated protein complex is important for parasitophorous vacuole membrane structure and intraerythrocytic parasite growth. Cell. Microbiol. 19, e12733 (2017).

      Article 

      Google Scholar
       

    • Pasternak, M. et al. RhopH2 and RhopH3 export enables assembly of the RhopH complex on P. falciparum-infected erythrocyte membranes. Commun. Biol. 5, 333 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Cao, J. et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol. Int. 58, 29–35 (2009).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Chugh, M. et al. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 5392–5397 (2013).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Ho, C.-M. et al. Malaria parasite translocon structure and mechanism of effector export. Nature 561, 70–75 (2018).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Morano, A. A., Rudlaff, R. M. & Dvorin, J. D. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat. Commun. 14, 3916 (2023).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • LaCount, D. J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Gavin, A.-C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Wessels, H. J. C. T. et al. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9, 4221–4228 (2009).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Hillier, C. et al. Landscape of the Plasmodium interactome reveals both conserved and species-specific functionality. Cell Rep. 28, 1635–1647.e5 (2019).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

      Article 
      PubMed 

      Google Scholar
       

    • Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

      Article 
      PubMed 

      Google Scholar
       

    • Dziekan, J. M. et al. Cellular thermal shift assay for the identification of drug–target interactions in the Plasmodium falciparum proteome. Nat. Protoc. 15, 1881–1921 (2020).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Tan, C. S. H. et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359, 1170–1177 (2018).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Becher, I. et al. Pervasive protein thermal stability variation during the cell cycle. Cell 173, 1495–1507.e18 (2018).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Hashimoto, Y., Sheng, X., Murray-Nerger, L. A. & Cristea, I. M. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat. Commun. 11, 806 (2020).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Justice, J. L. et al. Systematic profiling of protein complex dynamics reveals DNA-PK phosphorylation of IFI16 en route to herpesvirus immunity. Sci. Adv. 7, eabg6680 (2021).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Sun, S. et al. Improved in situ characterization of protein complex dynamics at scale with thermal proximity co-aggregation. Nat. Commun. 14, 7697 (2023).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Reed, T. J., Tyl, M. D., Tadych, A., Troyanskaya, O. G. & Cristea, I. M. Tapioca: a platform for predicting de novo protein–protein interactions in dynamic contexts. Nat. Methods 21, 488–500 (2024).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Pasini, E. M. et al. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 108, 791–801 (2006).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Bryk, A. H. & Wiśniewski, J. R. Quantitative analysis of human red blood cell proteome. J. Proteome Res. 16, 2752–2761 (2017).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Pazicky, S. P. falciparum MAPX models, timepoints 4–22 hpi. Zenodo https://doi.org/10.5281/ZENODO.13859621 (2025).

    • Huang, H. & Bader, J. S. Precision and recall estimates for two-hybrid screens. Bioinformatics 25, 372–378 (2009).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Li, B., Altelaar, M. & van Breukelen, B. Identification of protein complexes by integrating protein abundance and interaction features using a deep learning strategy. Int. J. Mol. Sci. 24, 7884 (2023).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Wong, W. et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife 3, e03080 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Sun, M. et al. Dynamical features of the Plasmodium falciparum ribosome during translation. Nucleic Acids Res. 43, 10515–10524 (2015).

      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Wong, W. et al. The antimalarial Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2, 17031 (2017).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Holder, A. A., Freeman, R. R., Uni, S. & Aikawa, M. Isolation of a Plasmodium falciparum rhoptry protein. Mol. Biochem. Parasitol. 14, 293–303 (1985).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Cooper, J. A. et al. The 140/130/105 kilodalton protein complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Mol. Biochem. Parasitol. 29, 251–260 (1988).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Takebe, S., Witola, W. H., Schimanski, B., Günzl, A. & Ben Mamoun, C. Purification of components of the translation elongation factor complex of Plasmodium falciparum by tandem affinity purification. Eukaryot. Cell 6, 584–591 (2007).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Tellier, G. et al. Identification of Plasmodium falciparum translation initiation eIF2β subunit: direct interaction with protein phosphatase type 1. Front. Microbiol. 7, 777 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Dastidar, E. G. et al. Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway. BMC Biol. 10, 5 (2012).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Jaramillo Ponce, J. R., Kapps, D., Paulus, C., Chicher, J. & Frugier, M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J. Biol. Chem. 298, 101987 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Wang, L. et al. Characterization of the 26S proteasome network in Plasmodium falciparum. Sci. Rep. 5, 17818 (2015).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Leneghan, D. & Bell, A. Immunophilin–protein interactions in Plasmodium falciparum. Parasitology 142, 1404–1414 (2015).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Garrido, M. F. et al. Regulation of eIF4F translation initiation complex by the peptidyl prolyl isomerase FKBP7 in taxane-resistant prostate cancer. Clin. Cancer Res. 25, 710–723 (2019).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Thommen, B. T. et al. Genetic validation of PfFKBP35 as an antimalarial drug target. eLife 12, RP86975 (2023).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Montemayor, E. J. et al. Molecular basis for the distinct cellular functions of the Lsm1–7 and Lsm2–8 complexes. RNA 26, 1400–1413 (2020).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Zhang, Y. et al. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat. Commun. 11, 4509 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Menard, L., Maughan, D. & Vigoreaux, J. The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? Biology 3, 623–644 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Droll, D. et al. Disruption of the RNA exosome reveals the hidden face of the malaria parasite transcriptome. RNA Biol. 15, 1206–1214 (2018).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Liu, J.-J. et al. CryoEM structure of yeast cytoplasmic exosome complex. Cell Res. 26, 822–837 (2016).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular Insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711–720 (2001).

    • Carmo, O. M. S. et al. Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLOS Pathog. 18, e1009882 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Dietz, O. et al. Characterization of the small exported Plasmodium falciparum membrane protein SEMP1. PLoS ONE 9, e103272 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Das, D., Krishnan, S. R., Roy, A. & Bulusu, G. A network-based approach reveals novel invasion and Maurer’s clefts-related proteins in Plasmodium falciparum. Mol. Omics 15, 431–441 (2019).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Birnbaum, J. et al. A genetic system to study Plasmodium falciparum protein function. Nat. Methods 14, 450–456 (2017).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Heiber, A. et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLOS Pathog. 9, e1003546 (2013).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Mesén-Ramírez, P. et al. Stable translocation intermediates jam global protein export in Plasmodium falciparum parasites and link the PTEX component EXP2 with translocation activity. PLOS Pathog. 12, e1005618 (2016).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Hawthorne, P. L. et al. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer’s clefts. Mol. Biochem. Parasitol. 136, 181–189 (2004).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Klink, B. U. et al. Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proc. Natl Acad. Sci. USA 119, e2121494119 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Nordmann, M. et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20, 1654–1659 (2010).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Struck, N. S. et al. Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. J. Cell Sci. 118, 5603–5613 (2005).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Krai, P., Dalal, S. & Klemba, M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS ONE 9, e89771 (2014).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Kimmel, J. et al. Gene-by-gene screen of the unknown proteins encoded on Plasmodium falciparum chromosome 3. Cell Syst. 14, 9–23 (2023).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Goyal, M., Banerjee, C., Nag, S. & Bandyopadhyay, U. The Alba protein family: structure and function. Biochim. Biophys. Acta 1864, 570–583 (2016).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Jelinska, C. et al. Obligate heterodimerization of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging. Structure 13, 963–971 (2005).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, e5 (2003).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

      Article 
      PubMed 

      Google Scholar
       

    • Pease, B. N. et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J. Proteome Res. 12, 4028–4045 (2013).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Foth, B. J., Zhang, N., Mok, S., Preiser, P. R. & Bozdech, Z. Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol. 9, R177 (2008).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Foth, B. J. et al. Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteom. 10, M110.006411 (2011).

      Article 

      Google Scholar
       

    • Kucharski, M. et al. A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples. Malar. J. 19, 363 (2020).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Khacho, M. et al. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol. Biol. Cell 19, 5296 (2008).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Bunai, F., Ando, K., Ueno, H. & Numata, O. Tetrahymena eukaryotic translation elongation factor 1A (eEF1A) bundles filamentous actin through dimer formation. J. Biochem. 140, 393–399 (2006).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Chang, R. & Wang, E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J. Cell. Biochem. 100, 267–278 (2007).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Carothers, D. J., Pons, G. & Patel, M. S. Dihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases. Arch. Biochem. Biophys. 268, 409–425 (1989).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • DaFonseca, C. J., Shu, F. & Zhang, J. J. Identification of two residues in MCM5 critical for the assembly of MCM complexes and Stat1-mediated transcription activation in response to IFN-γ. Proc. Natl Acad. Sci. USA 98, 3034–3039 (2001).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Lenz, S. et al. Reliable identification of protein–protein interactions by crosslinking mass spectrometry. Nat. Commun. 12, 3564 (2021).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Lu, H. et al. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct. Target. Ther. 5, 213 (2020).

      Article 
      PubMed 
      PubMed Central 

      Google Scholar
       

    • Lu, Q. et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proc. Natl Acad. Sci. USA 119, e2118220119 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Perrin, J. et al. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nat. Biotechnol. 38, 303–308 (2020).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Pazicky, S. SamPazicky/MAPX: MAP-X v1.0.0. Zenodo https://doi.org/10.5281/ZENODO.17173443 (2025).

    • Jackson, K. E. et al. Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem. J. 403, 167–175 (2007).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R interface to the Levenberg–Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. https://cran.r-project.org/package=minpack.lm (2023).

    • Harrell, F. E. Jr. Hmisc: Harrell miscellaneous. http://cran.r-project.org/web/packages/Hmisc (2024).

    • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

      Article 

      Google Scholar
       

    • Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision–recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Moon, R. W. et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc. Natl Acad. Sci. USA 110, 531–536 (2013).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Cronshagen, J. et al. A system for functional studies of the major virulence factor of malaria parasites. eLife 13, RP103542 (2024).


      Google Scholar
       

    • Grüring, C. & Spielmann, T. Imaging of live malaria blood stage parasites. Methods Enzymol. 506, 81–92 (2012).

    • Tonkin, C. J. et al. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol. Biochem. Parasitol. 137, 13–21 (2004).

      Article 
      PubMed 
      CAS 

      Google Scholar
       

    • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

      Article 

      Google Scholar
       

    • Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

      Article 
      PubMed 
      PubMed Central 
      CAS 

      Google Scholar
       

    • Gustavsen, J. A., Pai, S., Isserlin, R., Demchak, B. & Pico, A. R. RCy3: network biology using Cytoscape from within R. F1000Research 8, 1774 (2019).

    • Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8 (2015).

    • Pedersen, T. L. patchwork: the composer of plots (2024).

    • Pazicky, S. Structure of the P. falciparum exosome ring. ModelArchive https://doi.org/10.5452/ma-a867m (2025).

    • Pazicky, S. MAPX publication workflow. Zenodo https://doi.org/10.5281/ZENODO.17190585 (2025).

    • Pazicky, S. P. falciparum MAPX models, timepoints 28–40 hpi. Zenodo https://doi.org/10.5281/ZENODO.13836099 (2025).



    • Read more about this post…

      Credits: Source

      Disclaimer

      Join us

      28,500FansLike
      400FollowersFollow
      600SubscribersSubscribe

      Local Weather

      New York
      moderate rain
      3.7 ° C
      5 °
      2 °
      93 %
      7.7kmh
      100 %
      Tue
      4 °
      Wed
      5 °
      Thu
      4 °
      Fri
      1 °
      Sat
      4 °

      Web Hits

      hit counter

      Visitor Count

      hit counter

      In-Service

      AF.com AI Powered 7-years

      Latest articles

      spot_imgspot_img

      This Cellular Trick Helps Cancer Spread, but Could Also Stop It – SciTech News

      Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to...

      Related articles

      Leave a reply

      Please enter your comment!
      Please enter your name here

      spot_imgspot_img
      Privacy Overview

      This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.